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Abstract

Session-based recommendation plays a central role in a wide
spectrum of online applications, ranging from e-commerce
to advertising services. However, the majority of existing
session-based recommendation techniques (e.g., attention-
based recurrent network or graph neural network) are not
well-designed for capturing the complex transition dynam-
ics exhibited with temporally-ordered and multi-level inter-
dependent relation structures. These methods largely over-
look the relation hierarchy of item transitional patterns. In
this paper, we propose a multi-task learning framework with
Multi-level Transition Dynamics (MTD), which enables the
jointly learning of intra- and inter-session item transition dy-
namics in automatic and hierarchical manner. Towards this
end, we first develop a position-aware attention mechanism
to learn item transitional regularities within individual ses-
sion. Then, a graph-structured hierarchical relation encoder
is proposed to explicitly capture the cross-session item tran-
sitions in the form of high-order connectivities by perform-
ing embedding propagation with the global graph context.
The learning process of intra- and inter-session transition dy-
namics are associated by cross units, which seamlessly pre-
serves the underlying low- and high-level item relationships
in a common latent space. Extensive experiments on three
real-world datasets demonstrate the superiority of MTD as
compared to state-of-the-art baselines.

Introduction
Personalized recommendation has attracted a lot of atten-
tion in real-life applications, to alleviate information over-
load on the web (Xia et al. 2020). In various recommenda-
tion scenarios, session-based recommendation has become
an important component in many online services (e.g., re-
tailing and advertising platforms) (Huang et al. 2004), to ad-
dress the unavailability issue of user information in realistic
scenarios (such as non-logged in customers or users with-
out historical interactions) (Quadrana et al. 2017; Ren et al.
2019; Yuan et al. 2020). At its core is to predict the next
interactive item based on a group of anonymous temporally-
ordered behavior sequences of users (e.g., clicked, browsed
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or purchased item sequences) (Liu, Zeng, and others 2018;
Wang et al. 2020; Wang et al. 2019a). To facilitate the study
of session-based recommendation, many efforts have been
devoted to developing various deep neural network models,
by exploring correlations between the future interested item
and past interacted ones, which contributes to smarter rec-
ommendations.

Existing session-based recommendation methods for un-
derstanding the item transitional regularities can be grouped
into several key paradigms. For example, one key research
line aims to capture transitional patterns of interacted item
sequence with recurrent neural network (Hidasi et al. 2015;
Hidasi and Karatzoglou 2018). Along this line, to aggregate
sequential embeddings into a more summarized session-
level representation, researchers recently propose to aug-
ment recurrent session-based recommendation frameworks
with attention mechanism (Li et al. 2017), or rely on the
memory network (Liu, Zeng, and others 2018; Wang et
al. 2019a). Furthermore, another recommendation paradigm
utilizes graph neural network as the item transition encoder,
to model long-term item dependencies within the session
based on the structured relation graph (Wu et al. 2019).

Despite their effectiveness, we argue that these meth-
ods are not sufficient to yield satisfactory recommenda-
tion results, due to their failure in encoding complex item
transition dynamics which are exhibited with multi-levels
in nature (Song et al. 2019). Particularly, in the practi-
cal session-based recommendation scenarios, there exists
session-specific short-term and long-term item transitions,
as well as the long-range cross-session item dependencies
in a global context (Al-Ghossein, Abdessalem, and Barré
2018). These different inter-correlations among items con-
stitute the underlying multi-level item transition dynamics.
As illustrated in Figure 1, while item t7 and t3 are not di-
rectly connected within the same session, there exist im-
plicit inter-dependency among them, due to the item tran-
sitional relationship of t2 → t3 and t7 → t2 in session
B and A, respectively. In such cases, items across different
sessions are no longer independent. The dependent signals
between interactive items may come from not only the intra-
session transition regularities, but also inter-session item re-
lations. However, to simplify the model design, most of cur-
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Figure 1: Illustrated example of session-based recommendation with multi-level transition dynamics.

rent session-based recommender systems only explore local
contextual features, while the global item transitional pat-
terns across exogenous sessions are neglected. This restricts
the capabilities of current models in capturing the hierarchi-
cal transition signals for making recommendations.

While intuitively useful to perform the joint learning of
item relation structures with multi-level transition dynamics,
it is non-trivial to do it well. In particular, the item dependen-
cies across different sessions can be complex. It is not nec-
essary that a future interactive item is more relevant to items
from a recent session that one that is further away (Kang
and McAuley 2018). Hence, when tackling the cross-session
item dependencies at various neighbor distances, the high-
order relation structures exhibited with item transition pat-
terns from a global perspective over all sessions, is neces-
sary to be investigated in the relation embedding function.
Additionally, intra-session item transition patterns vary by
sessions. When modeling the time-evolving item correlation
within a session, both the user’s sequential behavior (short-
term) and the overall session-specific purpose (long-term)
should be taken into account (Liu, Zeng, and others 2018;
Li, Wang, and McAuley 2020). Therefore, it is a significant
challenge to jointly integrate the intra-session item correla-
tions and inter-session item transition patterns into the rec-
ommendation framework in a fully adaptive manner.

Present Work. Motivated by the aforementioned chal-
lenges, we propose a new multi-task learning model with
Multi-level Transition Dynamics (MTD) for session-based
recommendation. In our MTD framework, we first devise
a position-aware attention mechanism to jointly capture the
intra-session sequential item transitions and session-specific
main purchase with the incorporation of timestamp informa-
tion. Specifically, we integrate a self-attention model with
an attentive aggregation layer to capture the sequential tran-
sitional patterns of items within each individual session,
without the rigid order assumption of user behavior (i.e.,
latent states are propagated through temporally-ordered se-
quences in recurrent framework). To argument the represen-
tation learning ability over individual sessions, an attentive
summarization layer is introduced to adaptively perform pat-
tern aggregation. In the hierarchical attentive component, we
also seek to explore the item positional information under a
sequential encoding module to learn the influence of time
factors. Additionally, inspired by the effectiveness of mu-
tual information maximization in prioritizing global or local
structural information in feature learning (Hjelm, Fedorov,
and others 2019), we model the cross-session item depen-
dencies in a hierarchical manner, i.e., from item-level em-
bedding learning to global graph-level representation. The
developed hierarchically structured encoder via graphical
mutual information maximization, endows the MTD with

the capability to incorporate inter-session transitional sig-
nals from low-level to high-level across different sessions.

We highlight key contributions of this paper as follows:
• We exploit multi-level item transition dynamics in study-

ing the session-based recommendation task. Towards this
end, we propose a new recommendation framework which
captures the item transition patterns, in the form of of
short- and long-term intra-session item dependencies, as
well as the cross-session item relation structures.

• We first develop a position-aware attentive mechanism
to learn the evolving intra-session behavioral sequential
signals and the summarized session-specific knowledge.
Furthermore, a global context enhanced inter-session re-
lation encoder is built upon the graphical neural network
paradigm, to endow MTD for capturing the inter-session
item-wise dependencies.

• Our extensive experiments on three real-world datasets
demonstrate that MTD outperforms different types of
baselines in yielding better recommendation results. Also,
we show the efficiency of our developed model as com-
pared to representative competitors and perform case stud-
ies with qualitative examples to investigate the interpreta-
tion capability of our MTD model.

Methodology
In this section, we present the technical details of our pro-
posed recommendation framework MTD. We first formu-
late our studied session-based recommendation scenario
as follows: Session-based recommendation aims to pre-
dict the next action of users based on their anonymous
historical activity sequences (e.g., clicks or purchases).
Let S = {v1, ..., vm, ..., vM} denote the item candidate
set, where M is the number of items. An anonymous
session s is the temporally-ordered item sequence s =
[vs,1, ..., vs,i, ..., vs,I ], where vs,i ∈ S denotes the i-th item
interested by the user in the session s, and I denotes the
length of session s. The recommendation model outputs a
list Y = [y1, y2, ..., yM ] for each session s, where ym de-
notes the probability that the next interacted item is vm. We
finally make recommendations based on the top-K ranked
items in terms of their estimated probability values.

Intra-Session Item Relation Learning
To capture item transitional relationships within a session,
we integrate two modules for learning the session-specific
item transition patterns: (i) position-aware self-attention net-
work for sequential transition modeling; (ii) attentive aggre-
gation for session-specific knowledge representation.
Self-Attentive Item Embedding Layer. In MTD frame-
work, we leverage the self-attention mechanism to learn



the relevance scores over historical interested items within
the session and draw the sequential contextual signals. Mo-
tivated by the attentive neural network in relation learn-
ing, self-attention mechanism has been proposed to tackle
various sequence modeling tasks such as machine transla-
tion (Yang et al. 2019) and spatial-temporal data predic-
tion (Wu et al. 2020)). Different from the standard atten-
tion module, self-attention could bring the benefits of cap-
turing the relevance of past instances (e.g., words or behav-
iors), and refine the representation process on the single se-
quence at various distance (Vaswani et al. 2017). Following
the transformer network, we build the intra-session transi-
tion modeling layer upon the dot-product attention which
consists of query, key and value dimensions. The weight ma-
trices WQ, WK , WV ∈ Rd×d respectively corresponds to
the query, key, value vectors, to map initial item embeddings
Es ∈ RI×d of session s into latent representations. The op-
erations of self-attention network are defined as follows:[Q

K
V

]
= Es

[WQ

WK

WV

]
; Att(Q,K,V) = δ(

QKT

√
d

)V (1)

where we define Xs ∈ RI×d = Att(Q,K,V) to represent
the learned item embeddings with the modeling of pairwise
relations between items [vs,1, ..., vs,i, ..., vs,I ] in session s.
δ(·) denotes the softmax function and

√
d is the scaling fac-

tor during the inner product operation.
We further enhance the self-attentive transition learning

module with the modeling of non-linearities with the feed-
forward network as shown below:

X̃s = FFN(Xs) = ϕ(Xs ·W1 + b1) ·W2 + b2 (2)

we utilize ϕ(·)=ReLU as the activation function and W1,
W2 ∈ Rd×d and b1, b2 ∈ Rd are trainable weight matri-
ces and bias terms. After integrating the self-attention layer
with the feed-forward network, we generate the embeddings
X̃s ∈ RI×d for all items [vs,1, ..., vs,I ] in each session.

Position-aware Item-wise Aggregation Module. We fur-
ther design a position-aware attentive aggregation compo-
nent to fuse the encoded item-wise relations for capturing
the user main purpose within individual session s. We as-
sign larger importance to the item states in which they have
more contextual relations with future interested item. In par-
ticular, for the set of items in session s, we learn a set of
weights {α1,...,αt,...,αI} corresponding to the set of learned
item embeddings X̃s = {xs,1, ..., xs,i, ..., xs,I}. Formally,
αi is calculated as follows:

αi = δ(gT · σ(W3 · xs,I + W4 · xs,i)) (3)

where g ∈ Rd is a linear projection vector for generating the
weight scalar αi. W3, W4 ∈ Rd×d. σ(·) and δ(·) denotes the
sigmoid and softmax function, respectively. The aggregated
session representation as x∗s , i.e., x∗s =

∑I
i=1 αi · xs,i.

We further augment the intra-session item-wise fusion
module with the injection of positional information, to cap-
ture the session-specific temporally-order signals of items.
The dimensionality of positional representation is also set as

d. This endows the modeling of relative positions with the
incorporation of decay factor into linear transformations:

ps =

I∑
i=1

ωi · xs,i; ωi =∝ exp(|i− I|+ 1) (4)

where ps denotes the fused representation with the preserva-
tion of relative positional information across different items.
We construct a concatenated embedding for individual ses-
sion of s as qs = Wc[xs,I , x∗s,ps], where Wc ∈ Rd×3d

performs the transformation operation. After that, follow-
ing the implicit feedback-based recommendation paradigm
in (He et al. 2020; Wang et al. 2019c), we utilize the inner
product between qs and embedding of item candidate vm as
zm = qT

s vm and define our loss function of intra-session
item relation learning with the cross-entropy as follows:

Lin = −
N∑
n

ynlog(ỹn) + (1− yn)log(1− ỹn) (5)

where yn denotes the ground truth label of n-th instance and
ỹn is the corresponding estimated result (i.e., ỹn = δ(zn)).

Global Transition Dynamics Modeling
To comprehensively capture the global cross-session transi-
tion dynamics among items, we develop a graph neural net-
work architecture (as illustrated in Figure 2) to inject high-
order dependent signals across different sessions into ses-
sion representations. In particular, we first formulate a cross-
session item graph G = (V, E) in which nodes V and E are
generated from all historical sessions. Each session s can be
regarded as a path which starts from vs,1 and ends at vs,I in
graph G. The adjacent matrix A is constructed where each
entry am,m′ = 1 if there exists a transition relation from
item vm to vm′ and am,m′ = 0 otherwise.

We first propose a graph-structured message passing ar-
chitecture to model the local context of transitional signals
between different items. We formally define the correspond-
ing encoding function as follows:

H(l+1) = ϕ(A,HlWl) = ϕ(D̂
− 1

2 ÂD̂
− 1

2 HlWl) (6)

where H(l+1) ∈ RM×d denotes the learned representations
over items under the l-th propagation layer. With the aim of
incorporating the self-propagated signals, we update the ad-
jacent matrix with the summation of identify matrix I and
the original adjacent matrix A as Â = A + I. Then, we fur-
ther apply the symmetric normalization strategy to conduct

the information aggregation as: D̂
− 1

2 ÂD̂
− 1

2 , where D̂ is the
diagonal node degree matrix of matrix A.
Global Dependency Representation. After obtaining
H = {h1, ...,hm, ...hM}, we propose to capture the high-
order global dependencies across correlated items from dif-
ferent sessions. Different from the session-based recom-
mender system (Xu et al. 2020b) which replies on the ran-
dom walk to generate item path, we leverage graph neural
networks to consider the global item dependency across dif-
ferent sessions. Specifically, we first generate a fused graph-
level emebdding with the aggregation function as: z = τ(H)
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Figure 2: Global transition dynamics modeling

(RM×d → Rd), where τ(·) denotes the mean pooling op-
eration. Motivated by the paradigm of global feature repre-
sentation with mutual information (Veličković et al. 2019a),
we enhance our cross-session item relation encoder with
the global context of the mutual information between patch-
level embedding (H) and graph-level representation z.

We develop a classifier to perform the global depen-
dency representation under the mutual information learning
paradigm. It aims to differentiate positive (hm, z) and nega-
tive instances (h̃m, z) in graph G by preserving the under-
lying cross-session item transition dynamics, the negative
sample pair (h̃m, z) are generated by associating sampled
item nodes with the fake embeddings based on the node
shuffling strategy (Velickovic et al. 2019b). Then, both the
positive and negative instances are fed into the classifier for
classification task with the encoding function ξ(·):

ξ(hm, z) = σ(hT
m ·Wg · z);Rd × Rd → R (7)

where Wg ∈ Rd×d is the projection matrix. The classifier
function outputs a probability score of the target node be-
longs to G given the corresponding embedding pair (hm, z).
The loss function of our graph-level global dependency rep-
resentation component is defined as follows:

Lco = − 1

Npos +Nneg

(Npos∑
i=1

ρ(hm, z) · logξ(hm, z)

+

Nneg∑
i=1

ρ(h̃m, z) · log[1− ξ(h̃m, z)]
)

(8)

where ρ(·) is an indicator function where λ(hm, z) = 1

and ρ(h̃m, z) = 1 corresponds to positive and negative in-
stance pairs, respectively. We define the number of posi-
tive and negative samples as Npos and Nneg . By minimiz-
ing Lco (maximizing the mutual information between patch-
level and graph-level representations), we could generate the
enhanced user representations H∗ ∈ RM×d by encoding
cross-session item transitional patterns from low-level (lo-
cally) to high-level (globally).

Learning Process of MTD
Based on the multi-task learning framework of MTD, we
define our loss function with the integration of both intra-
and inter-session transition dynamics as follows:

L = Lcr + λ1Lin + λ2‖Θ‖22 (9)

where Θ are learnable parameters. λ1 and λ2 balance the
losses from two module and prevent over-fitting, respec-
tively. Since the input of cross-session relation encoder and

dual-stage attention network are different, we employ mini-
batch Adam to optimize Lin and Lcr alternatively. We fur-
ther define additional parameter f to denote the training fre-
quency of Lin optimization for loss balance. In each epoch,
we first optimize the graph-structured relation encoder and
initialize the item representations with the current embed-
dings. Note that the patch representation H, which are gen-
erated by the graph neural network, implies the global tran-
sition of items. To capture the global signal in recommenda-
tion module, we update the embedding table of items with
H after the optimization step of Lcr.
Complexity Analysis of MTD Framework. the intra-
session item relation learning requiresO(I×d2+I2×d) cal-
culations to compute the Q,K,V and attentive embeddings
Xs in the self-attention layer. After that, the rest of the intra-
session learning spends most complexity on transformations
in the d-dimensional hidden space (e.g. the two-layer feed-
forward network), which costsO(I×d2) complexity, and re-
sults in O(L1 × I × d2 + I2 × d) overall complexity, where
L1 denotes the number of d × d transformations. Further-
more, the graph-based inter-session item transition model-
ing component requires O(|A| × d + M × d2) complexity
for message passing and embedding transformation, where
|A| denotes the number of neighboring item pairs. Overall,
the time complexity of MTD is comparable to most of cur-
rent session-based recommender systems (e.g., recurrent or
graph neural networks), which is validated in our experi-
ments through model efficiency investigation.

Evaluation
In this section, we perform extensive experiments on three
publicly available real-life recommendation datasets and
compare MTD with various state-of-the-art techniques. Par-
ticularly, we aim to answer the following research questions:

• RQ1: Does MTD consistently outperform other baselines
by yeilding better recommendation performance?

• RQ2: How do different sub-modules in our MTD frame-
work affect the recommendation performance?

• RQ3: What is the influence of hyperparameter settings in
MTD for the model performance?

• RQ4: How is the model interpretation capability of MTD?

• RQ5: How is the scalability of the MTD method ?

Experimental Settings
Data Description. The data statistics with training/test de-
tailed split settings are shown in Table 1.



Table 1: Statistics of the experimented datasets.
Dataset Yoochoose Diginetica RetailRocket

# Train Sessions 369,859 719,470 433,648
# Test Sessions 55,400 60,858 15,132

# All Items 17,376 43,097 36,968
Average Length 6.15 5.13 9.93

Yoochoose Data1. This data comes from an online retailing
size to logs half year of user clicks (released by Recsys’15
Challenge). Following the pre-processing strategies in (Li et
al. 2017; Liu, Zeng, and others 2018), the sessions with the
length of≥ 2 and items with the appearing frequency of≥ 5
are kept in the training and test (from the last day) set.
Diginetica Data2. This data is collected from the CIKM Cup
2016 which records the user clicks from the time period of
six months. To be consistent with the settings in (Wu et al.
2019; Liu, Zeng, and others 2018), we do not include the
sessions that contains single clicked item. Sessions in the
test set are generated from the last week.
Retailrocket Data3. It contains the user browse data within
six months from another e-commerce company. Following
the same settings in (Xu et al. 2019), we filter out the items
with the browsed frequency less than 5 and sessions with the
length of less than 2. We set the data from the last week for
test and the remaining part for training.

Evaluation Metrics. We leverage two metrics which are
widely adopted in the session-based recommendation ap-
plications: Precision@K (Pre@K) and Mean Reciprocal
Rank@K (MRR@K). Following the same rubric in (Wu et
al. 2019; Li et al. 2017), MRR@K=0 if the first correctly
recommended items is not among the top-K ranked items.
Note that larger Pre@K and MRR@K scores indicate bet-
ter performance.

Methods for Comparison. In our experiments, we con-
sider the following baselines for performance comparison.
Frequency-based Recommendation Strategy.
• POP: it explores users’ past interested items and makes

recommendations with the identified most frequent items.
• S-POP: it recommends the most popular items to users by

considering the their activities from the current session.
Neighboring Relation Modeling Algorithm.
• ItemKNN (Davidson et al. 2010): it considers the item

correlations using k-nearest neighbors algorithm based on
items’ cosine similarity.

Recurrent Session-based Recommender system.
• GRURec (Hidasi et al. 2015): it is a representative

session-based recommendation approach using the gated
recurrent unit to encode the transitional regularities.

Attention-based Recommendation Frameworks.
• NARM (Li et al. 2017): it is a neural attention model to ar-

gument recurrent network for session representations, by
attending deferentially to sequential items.

1http://cikm2016.cs.iupui.edu/cikm-cup
2http://2015.recsyschallenge.com/challenge.html
3https://www.kaggle.com/retailrocket/ecommerce-dataset

• STAMP (Liu, Zeng, and others 2018): it is attention
model to capture user’s temporal interests from historical
clicks in a session.

• SASRec (Kang and McAuley 2018): this method is built
upon the self-attention architecture to model the long-term
item transition dynamics.

Session-based Recommendation with GNN.
• SR-GNN (Wu et al. 2019): it proposes a graph neural net-

work model to encode item transitions within a session to
generate its embedding.

Hybrid Session-based Recommendation Model.
• CSRM (Wang et al. 2019a): it integrates the inner memory

encoder through an outer memory network by considering
correlations between neighborhood sessions.

• CoSAN (Luo et al. 2020): it designs self-attention net-
works to model the collaborative feature information of
items from neighborhood sessions.

Parameter Settings
Our implement is based on Tensorflow and conduct experi-
ments on a GeForce GTX TITAN V GPU in Linux. In our
experiments, the embedding dimensionality d is set as 100.
We assign the regularization penalty λ2 = 10−6. All models
are optimized using the Adam optimizer with the batch size
and learning rate as 512 and 1e−3, respectively. The training
frequency f in each epoch is set as 1, 4, 6 corresponding to
the Yoochoose, Diginetica, Retailrocket, respectively. Fur-
thermore, the dropout technique is applied in the training
phase to alleviate the overfitting issue, with the ratio of 0.2.
Furthermore, experiments of most baselines are conducted
with their release source code.

Performance Validation (RQ1)
Superiority of MTD over Baselines. We present evalua-
tion results of all methods in Table 2, and show performance
of several representative baselines when varying the value
of K in Table 3 (due to space limit). we can observe that
MTD consistently outperforms other baselines in most cases,
which justifies the effectiveness of our model in comprehen-
sively capturing multi-level transition dynamics from intra-
session and inter-session relations in a hierarchical manner.
Performance Gap among Baselines. The naive fre-
quency (POP and S-POP) and similarity (ItemKNN) based
recommendation approaches perform much worse than
other baselines due to their limitations in capturing the
dynamic sequential patterns of item transitions. Addi-
tionally, the attention-based recommendation techniques
(NARM and STAMP) outperform the mere RNN approach
(GRU4REC)–considering singular level of item relations.
However, the significant improvement between MTD and at-
tentive recommendation model suggests that only consider-
ing the intra-session item transitions is insufficient to fully
capture the complex item transition dynamics from both lo-
cal and global perspectives. While SR-GNN tries to encode
the long-term item dependencies using the graph neural net-
work, it still yields suboptimal performance because its fail-
ure in learning cross-session temporal signals.



Table 2: Recommendation performance comparison of all methods in terms of Pre@10 and MRR@10
Dataset Metric POP S-POP It-KNN GRURec NARM STAMP SASRec SR-GNN CSRM CoSAN MTD

Diginetica
Pre 0.58 20.66 26.46 20.31 36.72 37.05 38.42 38.40 38.56 37.58 40.22

MRR 0.19 13.59 10.91 7.78 15.00 16.05 16.27 17.04 16.23 15.57 17.58

Yoochoose
Pre 4.59 28.61 43.40 55.13 60.19 58.79 60.42 60.84 60.46 61.01 61.83

MRR 1.51 18.45 21.39 25.76 29.03 29.44 30.47 30.57 30.37 30.21 30.83

Retailrocket
Pre 1.59 29.67 21.41 31.01 44.74 43.14 46.39 44.88 47.21 45.83 47.93

MRR 0.44 21.51 9.78 15.37 25.54 26.65 26.74 26.95 27.14 26.01 28.51

Table 3: Ranking performance with different K values.
Data Metric NARM STAMP SR-GNN CSRM CoSAN MTD

Digi
Pre@5 24.80 25.72 27.15 26.38 25.72 28.29
Pre@10 36.72 37.05 38.40 38.56 37.58 40.22
Pre@20 50.32 49.86 51.57 52.56 50.94 53.92

Reta
Pre@5 36.25 36.45 37.38 38.65 37.07 39.64
Pre@10 44.74 47.54 44.88 47.21 45.83 47.93
Pre@20 52.58 55.56 52.27 55.04 54.87 55.95

Model Ablation and Effect Analyses (RQ2)
We consider several model variants to investigate the effi-
cacy of key modules in the joint learning framework of MTD
.Effect of Hierarchical Attention Network. We design two
contrast models: i) MTD-va generates the session-level em-
beddings with the vanilla attention layer; ii) MTD-at further
incorporates the temporal factor into the MTD-va method.
Effect of Cross-Session Dependency Encoder. i) MTD-lo
only encodes the local-level item transition patterns without
the cross-session dependency encoder; ii) MTD-ga replaces
our graph-structured hierarchical relation encoder with the
graph attention network operated on all relevant sessions.
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Figure 3: Model ablation study of MTD.
We report the results in Figure 3 and observe that MTD

outperforms all other variants on all datasets in terms of
Pre@K and MRR@K under K = 20, which justifies
the effectiveness of the design of individual component in
our MTD framework. In particular: (1) The performance gap
among MTD-va, MTD-at, and MTD-lo illustrates the effec-
tiveness of our time-aware hierarchical attention network in
modeling the local item transitions. (2) Without the con-
sideration of cross-session item dependencies, MTD-lo per-
forms worse than MTD. It suggests the necessity of model-
ing the inter-session item correlations based on our devel-
oped graph-structured framework; (3) While the graph at-
tention network (MTD-ga) could learn global-level item re-
lations, it still falls behind MTD since it does not capture the
hierarchical informativeness across relevant sessions.

Hyperparameter Study of MTD (RQ3)
We further investigate the hyperparameter sensitivity of our
MTD (shown in Figure 4) and summarize the following ob-
servations. To save space and integrate results on different
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Figure 4: Hyper-parameter study of MTD.

datasets with different performance scales into the one fig-
ure, we set y-axis as the performance degradation ratio com-
pared to the best performance.
(1) Effect of Hidden Dimensionality d. The performance
saturates as the hidden dimensionality d reaches around 100.
This is because a larger dimensionality d brings a stronger
representation ability at the early stage, but might lead to
overfitting as the continuously increasing of d.
(2) Impact of Training Frequency f . We perform the train-
ing frequency study by varying f from 1 to 8, and could
notice that a large value of f (≥ 5) will degrade the perfor-
mance by misleading the objective function optimization.
(3) Influence of Depth in Graph Neural Architecture.
Stacking more graph convolution layers with the adjacent
matrix-based aggregation will more involve more redun-
dant information of high-order connectivity, which hinders
the learning process of global item relational structures in
MTD. This observation also suggests the rationality of our
designed graph neural component in simplifying and power-
ing the cross-session item dependency learning, via the ex-
ploration of mutual relations between patch-level item em-
beddings and high-level graph representation.

Case Studies: Model Interpretation (RQ4)
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Figure 5: Case studies of MTD framework
Hierarchical Relation Interpretation across Items. We
visualize the hierarchical item relations with quantitative



weights learned from our time-aware hierarchical attention
network on Diginetica. Figure 5 (a) and Figure 5 (b) show
the encoded pairwise item correlations in modeling the intra-
session sequential patterns of two sampled sessions across
different time steps. From Figure 5 (c), we can observe
that different items contribute differently to summarize the
session-specific main purchase with hidden representations.
Visualizations of Learned Session Embeddings. We fur-
ther visualize the projected session representations by our
MTD and two state-of-the-arts: SR-GNN and STAMP (as
shown in Figure 5 (d)). We randomly sample 180 session
instances and label each one with its corresponding next
clicked item (ground truth). It is easy to see that embeddings
of sessions with the same label (6 classes and each one is
represented with the same color) cluster closely and can be
better distinguished by MTD as compared to other two meth-
ods, which demontrate the effectiveness of our learned item
transitional patterns with session embeddings.

Model Scalability Study (RQ5)
Since efficiency is a key factor in many real-life recom-
mendation applications, we finally investigate the computa-
tional cost (measured by running time of individual epoch)
of our MTD and other state-of-the-art recommendation mod-
els. Our experiments are conducted on a GeForce GTX TI-
TAN V GPU and results on three different datasets are sum-
marized in Table 4. We can observe that MTD outperforms
most competitive baselines with different deep neural net-
work architectures (e.g., attention mechanisms and graph-
based message passing frameworks). Particularly, SR-GNN
involves much computation cost in the gating mechanisms
from neural network over each constructed session graph.
Additionally, it is time-consuming to discover collaborative
neighborhood sessions for each batch during the training
phase of CSRM method. In the occasional cases that MTD
miss the best performance (as compared to a streaming al-
gorithm STAMP–only using attention mechanism for transi-
tion aggregation), MTD still achieves competitive model ef-
ficiency. Overall, the proposed MTD is efficient and scalable
for large-scale session-based recommendation applications.

Table 4: Computational time cost (seconds) investigation.
Models Yoochoose Diginetica RetailRocket
NARM 35 66 81
STAMP 9 24 14
SASRec 18 28 42
TiSA 82 160 100
SR-GNN 1401 2586 2502
CSRM 530 556 228
MTD 24 40 53

Related Work
Session-based Recommender Systems. To model sequen-
tial patterns of user behaviors, many recommender systems
have been proposed to predict future interactions based on
users’ historical observations (Huang et al. 2019). In recent
years, many session-based recommendation techniques have
been developed based on various neural network architec-
tures (Qiu et al. 2020a). Particularly, one intuitive approach

is to apply the recurrent neural network (e.g., GRU) for mod-
eling the item sequential correlations (Hidasi et al. 2015).
Furthermore, attention mechanisms have been adopted for
pattern aggregation through relation weight learning, such as
NARM (Li et al. 2017) and STAMP (Liu, Zeng, and others
2018). Another paradigm of session-based recommendation
models lie in utilizing graph neural networks to capture the
graph-structured item dependencies, such as attributed graph
neural network for streaming recommendation (Qiu et al.
2020b) and graph-based message passing architectures (Wu
et al. 2019). Different from the above work, our MTD frame-
work aims to jointly captures the local and global item tran-
sitional signals in a hierarchical manner.

Graph Neural Networks for Recommendation. Recently
emerged graph neural networks shine a light on perform-
ing information propagation over user-item graph for recom-
mendation. Inspired by the graph convolution, several efforts
have been devoted to capturing collaborative signals from
the graph-based interacted neighbors, such as and Light-
GCN (He et al. 2020) and PinSage (Ying et al. 2018). Addi-
tionally, graph neural networks have also been integrated for
recommendation to aggregate external knowledge from user
side (Xu et al. 2020a) or item side (Wang et al. 2019b). Mo-
tivated by the success of graph neural networks, we propose
to capture cross-session item dependencies in a hierarchical
manner upon a global context enhanced graph network.

Conclusion
This work develops a new multi-task learning framework–
MTD, which aims to inject multi-level transition dynam-
ics into the session-based recommendation. By integrating
a time-aware dual-stage attention network and graph hier-
archical relation encoder, MTD not only models the intra-
session sequential transitions, but also derives the high-order
item relationships across long-range sessions. Experimental
results on different real-world datasets show that MTD is
superior to state-of-the-art baselines. In the future, we will
incorporate item content information (e.g., item text descrip-
tion or reviews) into MTD to deal with external attributes in
learning semantic-aware item transitions.
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